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Abstract—Short-fibre reinforced composites are attractive because of their ease of fabrication and
relatively low cost. They consist of partially aligned short fibres in a continuous matrix material,
the orientation of the fibres depending on the processing conditions employed. In this report a
theoretical treatment of the elastic anisotropy of a short-fibre reinforced composite resulting from
a partial orientation of the fibres is presented. The elastic stiffnesses of the composite may be
calculated in terms of the coetlicients W, in an expansion of the fibre-orientation distribution
function in generalized Legendre functions. Since the elastic stiffness tensor is of fourth rank. it
depends only on the coctlicients W), for [ < 4. These coetlicients may be determined from the
angular variation of the ultrasonic velocity. This allows the fibre-orientation distribution to be
plotted. Since the anisotropy in strength propertics originates from the preferred orientation of
fibres, the prediction of the tibre orientation distribution function will have an important application
in the failure analysis of these materials.

I. INTRODUCTION

Short-fibre ranforeed composites are attractive because of their ease of fabrication and
relatively low cost. They consist of partially aligned short fibres in @ continuous matrix
material, the orientation of the fibres depending on the processing conditions employed.
Templeton (1990) has recently studied the parameters which influence the streagth of short-
fibre reinforced composites produced by injection moulding. It was found that the fibre
volume fraction and orientation pliy & more important role in controlling the strength than
the other parameters considered which included fibre and resin strength, fibre critical length,
average fibre fength and a bonding efliciency factor. In injection moulding the orientation
of the fibres is largely determined by the flow rheology and this strongly influences the
mechanical properties of the composite, which are stronger and stiffer in the direction of
maximum orientation. The purpose of the present paper is to examine the sensitivity of the
elastic stiffness tensor to the libre-orientation distribution. The tibre-orientation distribution
function is defined in Section 2. The elastic stiffness tensor is calculated in Section 3 in terms
of the coctlicients W, occurring in an expunsion of this function in generalized Legendre
functions. A similur use of the fibre-orientation distribution function was made by Ferrari
and Johnson (1989) although no numerical results were obtained. [t is shown here that the
elastic stilfness tensor of the composite may be expressed in terms of the W, for I/ € 4 and
three parameters o, a, and a, chiuracterizing the anisotropy of 4 composite with perfectly
aligned fibres. These parameters are evaluated in Section 4.

Since the processing conditions vary from manufacturer to manufacturer it is of interest
to be able to determine the fibre-orientation distribution experimentally. This is usually
done by image analysis of photomicrographs taken from thin sections of the material, but
this is both time consuming and destructive. Non-destructive techniques for determining
the fibre-orientation distribution would be preferable. In this report the possibility of using
ultrasonic velocity measurements for this purposc is examined. [n elastically isotropic
materials, the ultrasonic velocitics are independent of the propagation direction and, in
the casc of shear waves, the direction of polarization. An anisotropic fibre-oricntation
distribution will remove this isotropic behaviour. The resulting anisotropy in the ultrasonic
velocities may therefore be used to characterize the fibre orientation distribution. In Section
5, the explicit expressions for the clastic stiffness tensor in terms of the expansion coeflicients
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of the fibre-orientation distribution function are used to calculate the ultrasonic velocities.
The expressions that result enable the inversion of the measured ultrasonic velocities for
the coefficients W, of the fibre-orientation distribution function for / < 4. This corresponds
to the specification of the orientation distribution by its first few moments which may be
used in equations of the type given by Templeton (1990) to predict the strength of the
composite.

2. THE FIBRE-ORIENTATION DISTRIBUTION FUNCTION

As a result of the processing conditions, the fibres in a short-fibre reinforced composite
will be partially aligned. To model the effect of a preferred orientation of fibres it is
convenient to introduce a set of axes OX, X', X'; with origin at the centre of the fibre and O X
along the fibre axis. Let the fourth-order effective elastic stiffness tensor of the composite be
denoted by CJ%,. Consider first the case in which the axes OX, XX, for all fibres are aligned.
If the C}34 in this case are denoted by Cji,. then. for fibres with circular cross-section, the
non-zero Ciy, are C) = C%,. C5;. C2 = C9. Cy = C5, = C5 = C;, Cy = C55 and

% = (C9,—C%,)/2 in the Voigt (two-index) notation. The anisotropy of C{,,, may there-
fore be completely specified in this case by three anisotropy parameters a,, a, and a, (Sayers,
1990) defined by :

a, = C‘{]‘{"C‘_’U—‘ZC(;}_‘;C‘SJ- (l)
a, = C‘{|—3Cu|z+2 ‘:;—2 ‘.‘;4. (2)
ay = 4C'{,-—3C‘_’,3—C‘;3—-2C‘34. (3)

In general, the fibres will not be perfectly aligned and a quantitative description of the elastic
anisotropy requires a knowledge of the orientation distribution of fibres. The orientation of
a fibre with elliptical cross-section with principal axes OX | X, X, with respect to a set of axes
Ox,x.x; fixed in the compositc may be specified by three Euler angles ¢, 6 and ¢. The
orientation distribution of fibres is then given by the fibre orientation distribution function
W&, ¢, P) where & = cos 8, 0 being the angle between OX; and Ox;. W(E ¢, ¢)dEdy de
gives the fraction of fibres between € and £+ dé&, ¢ and Y +dy, and ¢ and ¢ +d¢. Clearly,

L‘" L L W(E.¢.¢)didyde = I. @

3. ELASTIC ANISOTROPY DUE TO PARTIAL FIBRE ALIGNMENT

In the following, an approximate treatment of the fibre interactions will be employed,
in which the effective elastic constants of the composite are calculated by summing up the
contributions to the stiffness from fibres of all orientations, calculated as if all fibres in the
composite had the same orientation as the fibre under consideration. Since the interaction
between fibres decrcases with increasing separation, this approximation is expected to be
best for composites in which the orientations of neighbouring fibres are strongly correlated,
as is the case in composites produced by injection moulding. The approximation is expected
to be worst for randomly orientated fibres with no correlation between the orientations of
neighbouring fibres.

The elastic stiffness of the composite may therefore be calculated in this approximation
from the 7, and the fibre-orientation distribution function as follows. If T, is given
by the transformation rule for tensors of rank four, i.e.
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cx, \[ Cx; &xk)(c’x{) .
Lotimara = (Fﬁ)(cx)(é? éx,) )

then, taking into account the orientation distribution of fibres, the elastic stifinesses of the
composite CJ%,; are given by

% _ F
Ct]h" - t}kfmnquamnpq‘ (6)

where

Ir Ml M
T:;fdmnpq = J; J; J‘_ . Tijklmnpq(‘:~ ‘,(/. ¢) “V(:. '1[/’ ¢) d: d{!’ d¢ (7)

These integrals may be evaluated by expanding the fibre orientation distribution function
W(E y.¢) as a series of generalized spherical harmonics and using the orthogonality
relations between these functions (Morris, 1969). Since the elastic stiffness tensor is of
fourth rank it depends only on the coefficients W, of the expansion of W{&, . ¢) for!/ < 4.
If the fibres have an elliptical cross-section and their orientation distribution is orthotropic
with symmetry axes coincident with the reference axes Ox,x,.¢,, the non-zero W, are all
real and are restricted to even values of £, m and n. For fibres with a circular cross-section,
Winn = 0 unless n = 0. The clastic stiffnesses are therefore determined in this case by .y,
Wisge Wige. Wiag and Wy, and the three anisotropy factors a, @, and «a, defined above
{Saycrs., 1990). The g, will be calculated in Section 4.
For libres with circular cross-section, the equations for the C2,, are found to be:

8,/10_,
Cty o= A*+2u*+ - \/ s miay(Wipe— \/614/'910

105
4/, 70
+—~§émn'u,(W«m “”\’g Wi \/ ;V“ﬂ)* (8)

8./10 , _
C?: = ).‘l '+‘ 2}1* + ""\[" 7[.“3( "VZG(I + \/6 u"zzu)

105
4./2 2./10 70
+ “\“/”:ﬂ “ay ("V4()0+ “’“3£ Wi+ \—/3: W.uo), )

335

16,/2

C’;‘;=;‘.‘+2,u*———roswnz(\/gaswzoo"zatWwo)v (10)
8,/10 ,
C’:‘z=/"‘—-—-\w/—-:~7t'(7(h —ay)Wag + fﬂ *a\(Waoo— fw440) (1h
315 105
6./2
=it ~\/~ n*{Ta, - a‘)(quo-*-\/ngso) -\"/g‘“ﬂ fa\(Wiso—+/52Wa20), (12)

- 4. /10 16 ,—«-—
C¥3 = /‘.“‘}‘ 315 K“(?az“‘a))("Vzgo—\/éW1ao hat fﬂ a‘ W~300+ "V,;&g (l3)

; - 105

2,/
Ch = " (7a;+2a,)(Wmo—\/gW 20)— fn 24, (Waigo+/5/2Wis0), (14)

315 105
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2./10 | , ~ 6.2 . . o ]
Cs =pu*— i (Taz + 2a;)(Wagg + /6 W 220) — “l‘\;‘ﬂ'al(” s =~ 2W ). (15)

315 03
ﬁ .
3/10 _, a4y, -
Cto = p*+ ;’]5 22(Tas +2a3) Wapo + T\(—)—5~n“a.(W“,',—\/70H/JU,,). (16)

Here Ai* and p* are given by 154* = C{,+C%:+5C.+8CY,—4C%, and 30u* =
TCH +2C%3—5CY,—~4C%;+ 12C4%;. In principle. eqns (8)-(16) enable the determina-
tion of the W, for / <4 from the measured elastic stiffness tensor of the composite
provided the g, can be determined. This then allows the fibre-orientation distribution
function to be plotted. The a, are calculated in Section 4. Conversely, if the g, are known,
the expansion coefficients W yqq. 120, Wigo. Wasy and I, are sufficient to calculate the
elastic stiffnesses for any orthotropic orientation distribution of fibres. Note that in the
case of a transversely isotropic distribution of fibres with symmetry axis along Ox,,
Wi = Waao = Wi = 0 and the elastic stiffnesses are determined by only two expansion
coefficients W, and W,,, of the fibre-orientation distribution function.

4. CALCULATION OF THE q,

Following Willis (1983, 1984), consider a two-phase composite occupying a domain ¥
with displacement or traction components, or some combination of these, prescribed on the
exterior boundary S. The basic clastostatic problem is to solve the equilibrium conditions

da;,

o

=0, (17)

.\’,
subject to the boundary conditions. Here o is the stress tensor which is related. symbolically,
to the strain tensor ¢ by ¢ = Ce. In components this reads a,, = C, 4,64, C is the clastic
stiffness tensor which varies with position in the composite. The composites of interest
consist of a matrix with elastic stiffness tensor C'" in which are embedded inclusions of
elastic stiffness tensor C¥ whose centres are distributed throughout the composite according
to some stochastic process. The stress, strain and displacement ficlds depend on the location
of the inclusions and the objective is to find their ensemble averages (o). (&) and (u). To
treat this problem, Willis (1983, 1984) introduces a homogencous “comparison medium™
with elastic stiffness tensor C' Defining the stress polarization tensor t by v = (C—C'")e,
it follows that ¢ = C'¢+ 1. Equation (17) then gives

e, Ot
ct ot

&t
ok, dx

=0. (18)

For a uniform elastic medium with stiffness tensor C{}, the elastic Green's function

9'(x, x’) satisfies the equation :

gt (v, x)
(m Tk A = —3.0(x —x’
Cli 2x, O, 3,0(x—x’). (19)
A knowledge of this function allows the strain ficld in the composite to be written as an
integral equation :

£, (x) = & —JGf,"z,(x. X)) dx. (20)

Here, &' is the solution of the given boundary value problem for the comparison medium
and G'” is an operator related to the Green's function g'”(x, x"):
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g d(x.x")
Gil(x. x) = ———— . b
! Cx,Cx;  |ujpkn

where the suffix (ij) implies symmetrization with respect to these indices. For a composite
consisting of aligned ellipsoidal inclusions of identical shape Willis (1983, 1984) solves this
equation using a “‘closure assumption™ which Willis identifies as Lax’s quasi-crystalline
approximation in multiple scattering theory (Lax, 1952). This gives the following approxi-
mation for the effective elastic stiffness of a composite with aligned inclusions:

C* = C‘“+t';[(C‘:’—-C“’)"+(1—¢'2)P]", (22)

where P = SC'" ', § is Eshelby’s tensor (Eshelby, 1957) and &, is the volume fraction
of the ith phase. Defining T = [[+ P(C'?—C'")] ', Benveniste (1990) shows that this
equation may be written in the form:

C'=C"+e(CO=CNTe I+, T) " (23)

Benveniste (1990) shows further that this result is identical to that obtained using the
method of Mori and Tanaka (1973) for the case of aligned ellipsoidal inclusions. The
components of C* may therefore be derived from the work of Tandon and Weng (1984)
and Zhao et al. (1989) who used the method of Mori and Tanaka (1973) to derive the
engincering elastic moduli for a composite with aligned inclusions. For the case of spheroidal
inclusions with axes aligned along the Ox, direction, these constants are the longitudinal
Young's modulus £4,, the transverse Young's modulus £9,, the in-plane shear modulus
14, the out-of-plane shear modulus g}, the plane-strain bulk modulus K9, and the major

Paoisson’s ratio v4,. The %, may be obtained from these results using the following relations
1= Ch =+ K, (24)

o= B+ 4V K, (25)

Clr = — i+ K (26)

fi = C4y = 241KYs, @n

Cis = C%s = 1), (28)

4 = HCH = C) = . (29

With the choice of axes specified above, the moduli derived by Tandon and Weng (1984)
arc listed below

E%, |
S o B 30
E T Uoy(d, + 200 4,) /A (50)
A : : ‘ 31)
EV 140, =2vVd, + (1 =M A, + (1 + v 44]/24
JIsY (25
’"lm =1+ /‘“, . (32)

F;‘_‘_IT, +2(1=r2)Syy
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49 U
“tln =1+ PR , (33)
PR +2(1=r2)81202
K9, L+ =2v')

TR W ;o) yrorar gy e o A Sl

Expressions for 4, A, A,, A;, 4, and A have been given by Tandon and Weng (1984).

R is the plane strain bulk modulus of the matrix, and is given by K" = iV 4+ 4'". The
major Poisson’s ratio v4, is not an independent modulus but is related to the others by

. ES, ‘33( 1o )
Y=\t ) 35
o i 4 \ui2 12 (33)

Zhao et al. (1989) have obtained the following explicit expression for v4,:

V(A + 2V A + (4, =1 4y)
: A+v, (4, +2v"4,)

Ve

vy = V(l)_L'

(36)

These expressions were evaluated for the case of glass fibres in an epoxy matrix, for which
E'" =276 GPa, v'" = 0.35, £9 = 72.4 GPa, v'* = 0.2 (Tandon and Weng, 1984). Figure
I shows the variation of CY,/C\\. C43/CY{. C45/C\12, C4,/CYY, C4/CY and C4./CYY
with volume fraction v, for vartous aspect ratios . Here CY) = CY) = iV +2u'",
C=C{/=:i" and CY{} =C =u". (% is not indcpendent but is given by

e = (C1—C12)/2. C4y and C4,; are seen to be sensitive to the aspect ratio 2 of the
inclusions whilst C¢,, C9,, C%, and C%, are relatively insensitive.

It is scen in Fig. | that as the fibre volume fraction approaches unity, the clastic
constants of the composite become equal to the isotropic clastic constants of the fibres. In
a real composite material, however, the fibre volume fraction is limited by the maximum
packing density and the theory will thercfore not be applicable after this volume fraction
is reached. Figure 2 shows the anisotropy factors ¢, «, and «a; defined by eqns (1)-(3) as
a function of volume fraction v, for various aspect ratios a. The maxima and minima scen
in these figures at high volume fraction are artefacts of the theory resulting from the elastic
constants of the composite becoming equal to the isotropic elastic constants of the fibres
at high volume fractions. The theory is therefore inapplicable for volume fractions much
above 70%.

A knowledge of the ¢, allows the elastic stiffnesses CJ%,, of the composite to be deter-
mined for any orthotropic orientation distribution of fibres by using eqns (8)~(16) and
the first few coefficients I, in an expansion of the orientation distribution function in
generalized spherical harmonics. The W, are given by

I e ("2n | )
Wi = ;ng J J . W D) Zima (E)e™ €™ dE dy dop. (37)
() 0 -

Here the Z,,,(S) are the generalized Legendre functions defined by Roe (1965). W,
therefore represents the value of a polynomial of trigonometrical functions of 0, ¥ and ¢
averaged over all fibre orientations. The use of a limited number of W,,, therefore cor-
responds to the specification of the orientation distribution by its few moments. These may
then be used in equations of the type given by Templeton (1990) to predict the strength
of the composite. It is interesting to note the values of W,,, and W,,, for the cases of
completec fibre alignment. For complete alignment of fibre axes along Oux,,
Waeo = /10/87° = 0.04005, W,,, = 0 whilst for the case of fibre axes being randomly
orientated in the x,x, plane, W, = —\/W)/16n3= —0.02003, Wi, =0. Perfect
alignment of fibres along Ox, corresponds to W,y = —\/T()/l6n: = —0.02003,
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Fig. 1. The variation of (a) C4,/C4}. (b) C4,/CY. (€) C1/CYN. (d) C4,/CYY. (e) Cu/CLY and (F)
4 o/ Ch with volume fraction v, for aspect ratios x = 2, 5, 10, 25 and 100 as indicated on the curves.
The superscripts @ and (1) denote the properties of the composite with perfectly aligned fibres and
the matrix phase respectively. Where the curves are closely spaced only the curves for 2 = 2 and
100 are labelled.
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Fig. 2. The anisotropy factors (a) a,. (b) a; and (¢} a, defined by eqns (1)-(3) for aspect ratios
2= 2.5, 10, 25 and 100 as indicated on the curves.
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Fig. 3 Equal arca projection of the orentation distribution of fibre axes for the cases
W e = —00105, I, = 0.00646,

Wasy = J15/16n° = 002453 whilst for complete alignment along Ox,, Wiy =
- J10/167% = ~0.02003, Wy, = — /15/167% = —0.02453.

As an exampie, Fig. 3 shows an equal area projection of the orientation distribution
of fibre axes for the case Wi,y = —~0.0105, W,,, = 0.00646. The Qx, direction lies at the
centre of this figure. A random distribution of fibres would correspond to a value of one
everywhere in this figure. The peaks therefore correspond to a preferential orientation of
fibre axes. It is seen that the case illustrated in Fig. 3 corresponds to most fibres lying in
the x,x, planc with a preferential alignment of fibres along Ox,. The elastic stiffnesses can
be calculuted from eqns (8)-(16) and are plotted as a function of volume fraction in Fig. 4
for the case of glass fibres with aspect ratio x = 100 in epoxy matrix.

5. ULTRASONIC ANISOTROPY DUE TO PARTIAL FIBRE ALIGNMENT

The ultrasonic wave velocitics in the composite may be obtained as solutions of the
Christoffel equations (Musgrave, 1970). If ¢, denotes the velocity of ultrasound propagating
in the O, dircction with polarization in the Ox; direction, the equations for the velocities
are:

pz“ = A*42u* +4\/'?;vz{ Dm ii oo — /Mfwﬁ)
+a,(3W 00 = 2/ 10W 430+ /TOW 0))/105.  (38)

2= A 2 420205 (Waao + /6 W asa)

F A 3W 00+ 2/ 10W 430+ /TOW 0)]/105. (39)

P

o
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Fig. 4. The elastic stiffnesses C3/C for (a) ij = 11, 22 and 33, (b} #/ = 12, 31 and 23, and (c)
if =44, 55 and 66 calculated from cqns (8)-(16} plotted as a function of volume fraction for
the case of glass fibres with aspect ratio x = 100 and orientation parameters Wy = —0.0108,
1110 = 0.00646 in an cpoxy matrix. The superscipts « and (1) denote the propertics of the composite
and the matrix phase respectively. The values of i/ arc indicuted on the curves.
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I".i“ =%+ 20" = 16 :x:[\ Sas sy~ 2u, LV“,“]/’]OS. (40)
pris = prdy = 4 2 [0 STas+ 2a ) B s+ 3y (W — o TOWL)]/315. (41)

pri; = pri; = p* =2 207[0 STa s+ 2a (B — 63 10)

240 (W +/52W.)]/315. (42)

priy = priy = p* =20 277 [0 5T+ 2a (W + 61200)

+ 240, (Wi =/ 52W0m)]/315. (43)

Here p is the density of the composite and 2* and p* are defined above.

The cquations for otf-axis propagation arc more complicated uand are not given here.
They are casily obtained. however. trom the Christoffel equations using eqns (8)-(16) and
are sufficient to allow the 17, to be determined for / < 4.

6. CONCLUSION

[ this paper a theoretical treatment of the clastic anisotropy of a short-fibre reinforced
composite resulting Irom a partial orientation of the fibres is presented. The elastic stiffnesses
of the composite may be calculated in terms of the cocflicients W, in an expansion of the
fibre-orientation distribution Tunction in generalized Legendre functions. Since the clastic
stiffness tensor is of tourth rank. it depends only on the coetlicients W, tor { € 4. These
coeflicients may be determined from the angular variation of the ultrasonic velocity. This
allows the fibre-orientation distribution to be plotted. The inversion of the ultrasonic
velocities for the coctlicients 1, for { < 4 corresponds to the specification of the orientation
distribution by its lirst few moments which may then be used in equations of the type given
by Templeton (1990) to predict the strength of the composite. Since the anisotropy in
strength properties originates from the preferred orientation ot fibres, the prediction of the
fibre-orientation distribution function will have an important application in the faiture
analysis of these materials.
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