
/,,, J. Solid.' St"Ut'ltm'\ \"~ll. ;(,1, '0 ;.1, rr ~~,l:t ;~I+4, I~;

Pnntcd In Gf't'al Bntaln.
O()~O-- ihl'O "'= S5.(M)T.00

Pt.-rgamon Prns Ltd

ELASTIC ANISOTROPY OF SHORT-FIBRE
REINFORCED COMPOSITES

COLl:-.l M. SAYERSt
Shdl Research Arnhem. P.O. Ben ~() (Wt:stervoortsedijk 67d). 6800 AA Arnht:m.

The l':t:tht:rlands

( R('('eilwl ~O June 1991 ; in raised form ~ April 199~ I

Abstrl1ct-Short-tibre rt:inforct:d composites arc attractive because of their ease of fabrication and
rclativdy low cost. They consist of partially aligned short fibres in a continuous matrix material,
the orientation of the fibres depending on the processing conditions employed. In this report a
theoretical treatment of the clastic anisotropy of a short-fibre reinforced composite resulting from
a partial orientation of tht: fibres is presented. The elastic stiffnesses of the composite may be
calcul;lted in terms of the coetlicients 11',... in an expansion of thc fibre-orientation distribution
function in generalized Legendre functions. Since the elastic stiffness tensor is of fourth rank. it
depends only on the codlicicnts 11',... for I :s;; 4. These coetlicients may be determined from the
angulilf variation of thc ultrasonic velocity. This allows the tibre-orientation distribution to be
plotted. Since lhe anisolwpy in slrenglh pwperties originales fwm lht' preferred orienl.. tion of
tibres. the prediction of the tibn: orientation distribution function will h..ve an important application
in the failure analysis <,I' these materials.

I. INTRODUCTION

Short-lion: reinforced composites arc attractive because of their case of fabrication and
relatively low cost. They consist of parti'llly aligned short libres in a continuous matrix
material, the orientation of the libres depending on the processing conditions employed.
Templeton (/1)1)0) h.ls recently studied the par<lmeters which in/luence the strength ofshort­
fibre reinforced composites produced oy injection moulding. It was found that the libre
volume fraction and orientation playa more important role in controlling the strength than
the other parameters considered which included fibre and resin strength, libre critical length,
uverage fibre lenglh and a bonding elliciency factor. In injection moulding the orienlation
of the fibres is I.trgcly determined by the /low rheology and this strongly in/luences the
mechanical properties of the composite, whieh arc stronger and sti/rer in the direction of
maximum orientation. The purpose of the present paper is to examine the sensitivity of the
clastic stilrness tensor to the libre-orientation distribution. The libre-orientation distribution
function is dclined in Seclion 2. The elastic stilrness tensor is calculated in Section 3 in terms
of the coeflicients WI",,, occurring in an expansion of this function in generalized Legendre
functions. A similar use of the fibre-orientation distribution function was made by Ferrari
und Johnson (19S9) although no numerical results were obtained. It is shown here that the
elastic stilrness tensor of the composite may be expressed in terms of the WI",,, for I ~ 4 and
three parameters {II' {l1 and {/1 characterizing the anisotropy of a composite with perfectly
.l1igned fibres. These parameters arc evaluated in Section 4.

Since the processing conditions vary from manufacturer to manufucturer it is of interest
to be able to determine the fibre-orientation distribution experimentally. This is usually
done by image analysis of photomicrographs taken from thin sections of the material, but
this is both time consuming and destructive. Non-destructive techniques for determining
the fibre-orientation distribution would be prefemble. In this repO! t the possibility of using
ultrasonic velocity measurements for Ihis purpose is examined. In elastically isotropic
materials, the ultrasonic velocities arc independent of the propagation direction and, in
the case of shear waves, the direction or polarization. An anisotropic fibre-orientation
distribution will remove this isotropic behaviour. The resulting anisotropy in the ultrasonic
velocities may therefore be uscd to charactcrize the fibre orientation distribution. In S<:ction
5, the explicit expressions for the elastic stiffness tensor in terms of the expansion coellicients
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of the fibre-orientation distribution function are used to calculate the ultrasonic velocities.
The expressions that result enable the inversion of the measured ultrasonic velocities for
the coefficients W/mn of the fibre-orientation distribution function for I ~ 4. This corresponds
to the specification of the orientation distribution by its first few moments which may be
used in equations of the type given by Templeton (1990) to predict the strength of the
composite.

2. THE FIBRE-ORIENTATION DISTRIBUTION FUNCTION

As a result of the processing conditions. the fibres in a short-fibre reinforced composite
will be partially aligned. To model the effect of a preferred orientation of fibres it is
convenient to introduce a set ofaxes OX 1 XzXJ with origin at the centre of the fibre and OXJ

along the fibre axis. Let the fourth-order effective elastic stiffness tensor of the composite be
denoted by C;Jk/. Consider first the case in which the axes OX,XzXJ for all fibres are aligned.
If the CjJkl in this case are denoted by Crikl. then. for fibres with circular cross-section. the
non-zero C;'/kl are C'il = C~z. C'JJ' Ciz = C'~I' C'~J = C'Jz = C'J, = C'i). C~4 = CS5 and
q6 = (Ci,-Ciz)/2 in the Voigt (two-index) notation. The anisotropy ofqjk, may there­
fore be completely specified in this case by three anisotropy parameters {II. {lz and {lJ (Sayers.
1990) defined by:

( I )

(2)

(3)

In general. the fibres will not be perfectly aligned and a quantitative description of the elastic
anisotropy requires a knowledge of the orientation distribution of fibres. The orientation of
a fibre with elliptic,1I cross-section with principal axes OX,XzX, with respect to a set of axes
OXIXZX) fixed in the composite may be specified by three Euler ,1I1gles l/J. 0 and 4>. The
orientation distribution of fibres is then given by the fibre orientation distribution function
W(e. l/J.4» where ~:= cosO. 0 being the angle between OX) and Ox). W(~.l/J.4»d~dl/Jd(p

gives the fraction of fibres between ~ and ~+de. ,/I and l/J+dl/J. and (p and 4>+dq,. Clearly.

(4)

3. ELASTIC ANISOTROPY DUE TO PARTIAL FIBRE ALIGNMENT

In the following. an approximate treatment of the fibre interactions will be employed,
in which the effective elastic constants of the composite are calculated by summing up the
contributions to the stiffness from fibres of all orientations. calculated as if all fibres in the
composite had the same orientation as the fibre under consideration. Since the interaction
between fibres decreases with increasing separation. this approximation is expected to be
best for composites in which the orientations of neighbouring fibres are strongly correlated.
as is the case in composites produced by injection moulding. The approximation is expected
to be worst for randomly orientated fibres with no correlation between the orientations of
neighbouring fibres.

The elastic stiffness of the composite may therefore be calculated in this approximation
from the C7jkl and the fibre-orientation distribution function as follows. If Tjjklmnpq is given
by the transformation rule for tensors of rank four. i.e.
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(5)

then. taking into account the orientation distribution of fibres. the elastic stiffnesses of the
composite C'~kl are given by

(6)

where

(7)

These integrals may be evaluated by expanding the fibre orientation distribution function
W(~.I/;. ¢) as .1 series of generalized spherical harmonics and using the orthogonality
relations between these functions (Morris. 1969). Since the elastic stiffness tensor is of
fourth r'1Ok it depends only on the coefficients W1mn of the expansion of W(~.I/;.¢) for 1~ 4.
If the fibres have an elliptical cross-section and their orientation distribution is orthotropic
with symmetry axes coincident with the reference axes OXIX2XJ. the non-zero W1mn arc all
real and are restricted to even values of I. m and n. For fibres with a circular cross-section.
W1mn = 0 unless n = O. The clastic stiffnesses arc therefore determined in this cuse by W~O()'

W22lh ~V~oo. W~20 and WHO und the three unisotropy factors al. (12 and 0) defined ubove
(Sayers. 1(90). The 0, will be calculated in Section 4.

For fibres with circular cross-section. the equations for the C;~kI arc found to be:

C'" ''''., '" 16fi '(;;5 W 2 W ) (10)JJ = I, +-/l - IOS-n- \/JaJ ~oo- al ~oo.
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( 15)

( 16)

Here ;,* and /-l* are given by 15;,* = nl+e~3+5nc+8C~,-4C~J and 30.u* =
7e~,+2C~3-5e~1-4e~3+12C~J' [n principle. eqns (8)-(16) enable the determina­
tion of the W'mO for I:::; 4 from the measured elastic stiffness tensor of the composite
provided the G, can be determined. This then allows the fibre-orientation distribution
function to be plotted. The G, are calculated in Section 4. Conversely, if the a, are known,
the expansion coefficients W100• W1cO' WJOO , WJcO and ~VJJO are sufficient to calculate the
elastic stiffnesses for any orthotropic orientation distribution of fibres. Note that in the
case of a transversely isotropic distribution of fibres with symmetry axis along OX3.

W no = W410 = WJJO =°and the elastic stiffnesses are determined by only two expansion
coefficients W100 and W400 of the fibre-orientution distribution function.

4. CALCULATION OF THE C/,

Following Willis (1983.1984), consider a two-phase composite occupying a domain V
with displacement or traction components, or some combination of these. prescribed on the
exterior boundary S. The basic elastostatic problem is to solve the equilibrium conditions:

( 17)

subject to the boundary conditions. Here (1 is the stress tensor which is related, symbolically,
to the strain tensor I: by 0'= 0:. In components this reads (1" = ('"k,I:.,. C is the elastic
still'ness tensor which varies with position in the wmposite. The composites of interest
consist of a matrix with elastic stiffness tensor C( II in which arc embedded inclusions of
elastic stifl'ness tensor C( 1) whose centres arc distributed throughout the composite according
to some stochastic process. The stress, strain and displacement fields depend on the location
of the inclusions and the objective is to find their ensemble averages (a), (I:) and (II). To
treat this problem, Willis (1983, 1984) introduces a homogeneous "comparison medium"
with clastic stitrncss tensor C tO ) Defining the stress polarization tensor r by r = (C - ('1 0))1:,

it follows that a = C(Il)e + r. Equation (17) then gives

( 18)

For a uniform elastic medium with still'ness tensor em" the elastic Green's function
g~?)(x,x') satisfies the equation:

( 19)

A knowledge of this function allows the strain field in the composite to be written as an
integral equation:

(20)

Here, ,,(0) is the solution of the given boundary value problem for the comparison medium
and G(O) is an operator related to the Green's function gIO)(.\',.\"):
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(21 )

where the suffix (ij) implies symmetrization with respect to these indices. For a composite
consisting of aligned ellipsoidal inclusions of identical shape Willis (1983, 1984) solves this
equation using a "closure assumption" which Willis identifies as Lax's quasi-crystalline
approximation in multiple scattering theory (Lax, 1952). This gives the following approxi­
mation for the effective elastic stiffness of a composite with aligned inclusions:

(22)

where P = sell! I, S is Eshelby's tensor (Eshelby, 1957) and l'j is the volume fraction
of the ith phase. Defining T= [l+P(C(~)-CIIl)l-l,Benveniste (1990) shows that this
equation may be written in the form:

(23)

Benveniste (1990) shows further that this result is identical to that obtained using the
method of Mori and Tanaka (1973) for the case of aligned ellipsoidal inclusions. The
components of C" may therefore be derived from the work of Tandon and Weng (1984)
and Zhao et al. (1989) who used the method of Mori and Tanaka (1973) to derive the
engineering elastic moduli for a composite with aligned inclusions. For the case of spheroidal
inclusions with axes .l1igned along the Ox, direction, these constants are the longitudinal
Young's modulus E'; 10 the transverse Young's modulus E'i I' the in-plane shear modulus
11'; I, the out-of-plane shear modulus 11'[~, the plane-strain bulk modulus K'i 2 and the major
Poisson's ratio \,,; I' The C:', may be obtained from these results using the following relations:

(24)

(25)

(26)

(27)

(28)

(29)

With the choice of axes specified above, the moduli derived by Tandon and Weng (1984)
are listed below:

E"H I
E' I) = I + t' ~ (A I +Y I) A ~)lA-'

E';, I
Ei i) = I + L' ~ [ - 2\,( \)-A~+ (I - v( \) A ~ + (I + VI Il)A, Al/2A '

II'; I t' ~
-~ = 1+--· ------
Il'I Il 'I

----,.-- +2(1-L'~)S'IJ'1/1 "-1/(\1

(30)

(31)

(32)
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K~: (I +VII»(I-Y I»

KI I) = l-v(I)(1 +2V3d+L'2[2(V31-V(I)A)+(I-VIIJ(l +2V31»A~]/A'

(33)

(34)

Expressions for A, A" A 2, A), A 4 and A, have been given by Tandon and Weng (1984).
K( I) is the plane strain bulk modulus of the matrix, and is given by KI I) = ;.1 \) +pi I). The
major Poisson's ratio v31 is not an independent modulus but is related to the others by

(35)

Zhao et 01. (1989) have obtained the following explicit expression for V31 :

(36)

These expressions were evaluated for the case of glass fibres in an epoxy matrix, for which
Ell) = 2.76 GPa, v(1) = 0.35, E1:) = 72.4 GPa, Vi:) = 0.2 (Tandon and Weng, 1984). Figure
I shows the variation of C'i,/C(t'i, C'JJ/Cjlj, C'::/C\'i, C'JI/q?, C'~~/c~'l and C'~b/C~~:

with volume fr'lction l': for various aspect ratios oc. Here C\I/ = Clll.~ = ;.(1) + 21111),
C\'i = CVi = ;.1 1

J and C~ll = C~~ = 11"). C~/. is not independent but is given by
C~b = (C'j \ - Ci :)/2. ("j.l and C'J \ are seen to be sensitive to the aspect ratio :t of the
inclusions whilst C:" C;:, C~~ and C'~b are relatively insensitive.

It is seen in Fig. I that as the fibre volume fraction 'Ipproaches unity, the elastic
constants of the composite become equal to the isotropic elastic constants of the fibres. In
a real composite material, however, the fibre volume fraction is limited by the maximum
packing density and the theory will therefore not be applicable after this volume fraction
is reached. Figure 2 shows the anisotropy factors ai, a: and a J defined by eqns (I )-(3) as
a function of volume fraction v: for various aspect ratios oc. The maxima and minima seen
in these figures at high volume fraction are artefacts of the theory resulting from the clastic
constants of the composite becoming equal to the isotropic clastic constants of the fibres
at high volume fractions. The theory is therefore inapplicable for volume fractions much
above 70%.

A knowledge of the lI, allows the elastic stifTnesses Ci~kl of the composite to be deter­
mined for lIfly orthotropic orientation distribution of fibres by using eqns (8)-( 16) and
the first few coefficients Wlmn in an expansion of the orientation distribution function in
generalized spherical harmonics. The Wlmn are given by

(37)

Here the Zlmn(~) are the generalized Legendre functions defined by Roe (1965). W'mn

therefore represents the value of a polynomial of trigonometrical functions of 0, I/t and c/J
averaged over all fibre orientations. The use of a limited number of Wlmn therefore cor­
responds to the specification of the orientation distribution by its few moments. These may
then be used in eq uations of the type given by Templeton (1990) to predict the strength
of the composite. It is interesting to note the values of W:oo and W::o for the cases of
complete fibre alignment. For complete alignment of fibre axes along OX.h

W: on = JIO/81t: = 0.04005, W:: o = 0 whilst for the case of fibre axes being randomly
orientated in the XIX: plane, W: on = - JIO/161t: = -0.02003. W220 = O. Perfect
alignment of fibres along Ox 1 corresponds to W: nn = - jiOjl61t: = - 0.02003.
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I---+--------+--------+---t......... X2

Fig. .'1. E(IUal ;m;a pWlcdlUn Ill' the uricHtatinn distrihutillll or fihre axcs fur the cases
Wi"" "" -O.lJlUS, Wuu "" o.a064(,.

W22H = /15/16n 2 ;; 0.02453 whilst for complete alignment along OX2' W2Hll =
-/1O/16n 2 = -0.02003. W2211 = -/15/16n2 = -0.02453.

As an example. Fig. 3 shows an equal area projection of the orientation distribution
of fibre axes for the case W21111 = -0.0105. W 2211 "" 0.00646. The OX.1 direction lies ut the
centre of this figure. A random distribution of fibres would correspond to a value of one
everywhere in this figun:. The pcuks therefore correspond to a preferentiul orientation of
fibre axes. It is seen that the case illustrated in Fig. 3 corresponds to most fibres lying in
the '\IX2 plane with a preferential alignment of fibres along OXl' The elastic stifTnesses can
be calculated from eqns (8)-( 16) and are plotted as a function of volume fraction in Fig. 4
for the case of gluss fibres with aspect ratio :x = 100 in epoxy matrix.

5. ULTRASONIC ANISOTROPY DUE TO PARTIAL FIBRE ALIGNMENT

The ultrasonic wave velocities in the composite may be obtained as solutions of the
Christoffel eq uations (M usgrave, 1970). I1'1', I denotes the velocity of ultrasound propagl;lling
in the Ox, direction with polarizution in the Ox! direction. the equations for the velocities
ure:

I,d 1 = ;,* + 2JI* +4/21t 2[2"I'a.1( W:oll-./6W2211)

+(/1(3 W~oo - 2/IOW4 : o+ fiOWw )]/I05. (38)

I'd: = ;,*+2JI*+4/2nl2,,15a,(lV2011+)6WUO)

+(/I(3W41111 +2/IOW420 + fiOW-I.lo)]/105. (39)
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+ 2.+([ I ( WJIIII +,.j 5/2 ~VJ~tl)]/315. (.+2)

Here p is the density of the comp~,~ite and t.* and jt* are ddim:d above.
The equations for off-axis pfl'pagation arc more complicated and are not given here.

They are easily ohtained. howcver. from the Christoffel equations using eqns (8)-( 16) and
are sufficient to allow thc 1I"mll l\l he determined for I :s; .+.

h. CO~CLlfSIO~

In this paper a thetlrctical treatment of the elastic anisotropy ofa short-fibre reinforced
composite resulting from a pa rtial llrienta tion of the fihres is presented. The elastic stiffnesses
of the composite llIay he \.·alcubtcd in terms of the codlicients W,,,,,, in an expansion of the
fi hre-orienta titlll dist ri bu 1illn funct illn in genera Ii/cd Legendre functions. Since the clastic
stiffness tensor is of fourth rank. it depends only on the coellicients W'm" for I:s; 4. These
codlicients may be determined from the angular variation of the ultrasonic velocity. This
allows the fibre-orienlation dislrihution to be plotted. The invcrsion of the ultrasonic
velocities for the codlicicnts 1I"m" fill' I ~ .+ corresponds to the specification of the orientation
distribution by its lirst few monlents which may th.:n be us.:d in.:quations of th.: type given
oy Templ.:ton (Il)l)()) to predict th.: strength of th.: composit.:. Since the anisotropy in
str.:ngth properti.:s originates from th.: prdl:rr.:d ori.:ntation of fihres. th.: pr.:diction of the
lihr.:-orientalion distribution function will have an important application in the I~lilure

analysis of lh.:s.: materials .

..kklllJlr/e"i/<,lIIi',1I.1 This paper" pllhllshed hy p':f1ui"ion of Shdl lnkfllati'lllal.: R.:s.:ar.:h Maatsdlappij.
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